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Abstract

Early detection and accurate characterization of disease outbreaks are important tasks of public 

health. Infectious diseases that present symptomatically like influenza (SLI), including influenza 

itself, constitute an important class of diseases that are monitored by public-health 

epidemiologists. Monitoring emergency department (ED) visits for presentations of SLI could 

provide an early indication of the presence, extent, and dynamics of such disease in the 

population.

We investigated the use of daily over-the-counter thermometer-sales data to estimate daily ED SLI 

counts in Allegheny County (AC), Pennsylvania. We found that a simple linear model fits the data 

well in predicting daily ED SLI counts from daily counts of thermometer sales in AC. These 

results raise the possibility that this model could be applied, perhaps with adaptation, in other 

regions of the country, where commonly thermometer sales data are available, but daily ED SLI 

counts are not.
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1. Introduction

The 2009 H1N1 influenza outbreak highlighted the need for methods that not only detect an 

outbreak but also estimate incidence so that public-health decision makers can allocate 

appropriate resources in response to such an outbreak. Several studies [1–3] have attempted 

to estimate incidence during the 2009 H1N1 outbreak, but they were performed months after 

the outbreak and were based on data that are either not easy to collect (e.g., confirmed 

laboratory cases) or not available in a timely fashion (e.g., surveys). Some influenza 

surveillance systems were also in operation during the H1N1 outbreak, but they did not 

provide daily estimates of influenza activity [4,5].
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Previous research indicates that data on over-the-counter (OTC1) sales of retail healthcare 

products, such as cough and cold medications, can support the early detection of disease 

outbreaks [6,7]. In this paper, we provide support that thermometer sales (TS) increase 

significantly and early during an influenza outbreak.

We explore the hypothesis that TS data can be used to estimate accurately the number of 

patient cases that present to EDs and are symptomatically like influenza (SLI). We 

developed and evaluated a model to estimate the number of SLI cases in EDs in Allegheny 

County (AC), Pennsylvania based on TS. To train this model, we used ED visit data from 

hospitals in AC and TS data from AC. We then generalized the model to predict daily ED 

SLI cases from the daily TS in any region in which we are able to collect TS data. Unlike 

counts of ED SLI cases, which are not readily available for most counties in the US, there 

exists TS data for a significant number of locations throughout the US, with at most a one 

day delay. Given this availability, the method and model we present is intended to help 

public health epidemiologists throughout the US to estimate the extent of an influenza 

outbreak as it presents to EDs with little delay; the evaluation of this method beyond AC is 

proposed as a next step in the future pursuit of this line of research.

The remainder of this paper is organized as follows. In the next section, we provide an 

overview of previous research that aimed to detect and characterize influenza outbreaks 

using OTC sales. We summarize a project that facilitates obtaining daily OTC sales data 

across the US with little delay. We then discuss a method we developed to estimate SLI 

cases in AC. We describe the experimental methodologies we used to evaluate the 

performance of the models in AC, and we present and discuss the results of those 

experiments. We present methods to adjust TS data so that these models can produce 

estimates for other regions, not just AC. Finally, we present conclusions and close the paper 

with a summary.

2. Background and related work

This section provides background information about the use of OTC healthcare-product 

sales to detect disease outbreaks. We then provide an overview of the 2009 H1N1 influenza 

epidemic in the US and of several published studies that estimate its level of activity. The 

section then describes a system we have developed to estimate from ED reports the expected 

number of daily SLI cases that visit EDs in a region. We close the section by describing two 

influenza surveillance systems that can use the predictions produced by the models we 

present in this paper.

2.1. OTC sales data

Several studies have measured the value of using OTC-related data for the detection of 

outbreaks. These are either survey-based studies that are designed to reveal healthcare 

seeking behavior or retrospective studies to understand the correlation between OTC data 

and outbreaks.

1All the abbreviations used in this paper are listed in a glossary located after the References section.
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Survey-based studies have shown that a high percentage of individuals prefer to self treat 

using OTC healthcare products when they feel ill before, and sometimes instead of, seeking 

medical attention [8,9,7]. Metzger et al. [7] found that among the individuals they surveyed, 

purchasing an OTC healthcare product was the most common first action (37% of the time) 

to treat their illnesses.

Retrospective studies show high correlation between known outbreaks and the sales of OTC 

healthcare products. Campbell et al. [10] found that for some OTC categories the correlation 

is high enough that they could detect seasonal outbreaks of respiratory diseases based on 

OTC sales earlier than methods that use physician office visits (up to 7 days earlier). 

Magruder [11] obtained similar results in a study of the National Capital area (Washington 

DC and its suburbs), and found that, on average, sales of influenza remedies preceded office 

visits by 2.8 days and that there was an average correlation of 0.90 between them. Das et al. 

[12] found that the ratio of sales of cough and influenza medicines to sales of analgesics was 

highly correlated with the ratio ED SLI visits to other syndrome ED visits, with a correlation 

coefficient (r2) of 0.6. In this previous research, the OTC data used were collected only from 

the individual locations (mostly cities) that were studied. In the next section we describe a 

service that collects OTC data from across the US.

2.2. The NRDM project

The National Retail Data Monitor (NRDM) project has greatly reduced the effort to obtain 

OTC sales data for use in biosurveillance. NRDM collects daily sales data for products in 18 

OTC categories across the country [13,6]. Public health departments can access such 

information through a web-based interface or via web service protocols. NRDM was 

developed in our lab, the Real-time Outbreak and Disease Surveillance Laboratory (RODS), 

with the cooperation of selected retail chains that sell OTC medications. Using data from 

NRDM, our laboratory studied the effects of a single outbreak and other health events 

relative to the sales of OTC products. One of these internal studies, for instance, found that 

TS increased significantly and early during the 2003–2004 influenza outbreak [6]. The 

models we present in the current paper use TS from NRDM to estimate SLI cases that 

present to EDs and in the population.

Although the NRDM is a powerful information resource, it has several limitations. First, in 

most areas of the US, there are retail stores selling OTC healthcare products that do not 

report data to the NRDM. Second, for many areas where OTC sales data are collected, the 

OTC market share of some of the retail store chains that provide data to NRDM is not 

known with certainty. Third, the daily sales number reported for a product category is the 

sum of units that are sold and the units that are returned. Thus, a negative number of 

reported units on a particular date means that there were more units of a product category 

returned (which were bought at earlier, unknown dates) than units sold (which can be zero) 

on that date. Likewise, a positive number of units reported simply means that there were 

more units sold than units returned (which can be zero) on that day. Also, a zero number of 

units reported means that there was the same number of units sold and returned on that date, 

whereas when nothing is reported from a store for a given product type (i.e., no sales record 

is created), it means that no units of that type were sold or returned.
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We have addressed these limitations in multiple ways. In areas where there is incomplete 

coverage and market share information is available, we make adjustments to the sales data. 

When market share information is lacking, we estimate it. Finally, if we aggregate sales data 

over a large enough region (such as a county), the effects of returned units are not as 

significant. These methods are described in Appendix A.

2.3. H1N1 2009 outbreak

In April of 2009, pandemic H1N1/09 influenza infected thousands in Mexico and the US. 

Although influenza activity during the summer of 2009 in the US was low, starting in late 

August of that year a second wave of influenza caused by H1N1 occurred across the country 

[14,15]. It peaked during the second half of October, and finally it largely subsided in 

December [14,15,3,16]. Although it is difficult to determine exact dates, the literature 

indicates a period from August 23rd, 2009 (the start of the “last two weeks of August” [14]) 

through December 12th, 2009 (“declined to less than 10% during the week ending 

December 12” [15]). In AC, the epidemic had its highest activity level in late October [3].

Due to difficulties in obtaining an accurate count of total H1N1 cases [2], several 

researchers developed methods to estimate those counts and other characteristics of the 

outbreak. Early attempts to estimate the incidence and severity of pandemic H1N1 in the US 

include studies by Reed et al. [1] and Presanis et al. [2]. The former used a multiplicative 

model coupled with a Monte Carlo simulation to predict that between 1.8 and 5.7 million 

H1N1 cases had occurred in the US from April to July 2009. The latter used a Bayesian 

evidence-synthesis framework to estimate that during the same period as Reed et al. between 

0.16% and 1.44% of symptomatic H1N1 patients were hospitalized and that between 

0.0007% and 0.048% died. Later in 2009, the Centers for Disease Control and Prevention 

(CDC) used the method described in Reed et al. to estimate that between April and 

December 12, 2009 around 55 million people (approximately 18% of the US 2009 

population) had been infected with H1N1 in the US [16].

Ross et al. conjectured that asymptomatic and mild cases were missed by the CDC estimates 

[3]. To partially overcome that limitation, they performed a study to determine the 

seroprevalence of antibodies to the pandemic 2009 H1N1 influenza strain in residents of 

AC. They found that seroprevalence against pandemic H1N1 across age groups was 

approximately 21%. They then extrapolated the results from their sample to both the local 

county population and the general US population. They estimated that about 63 million 

people in the entire US became infected through early December 2009.

Table 1 shows a summary of the methods described in this section.

2.4. Bayesian Case Detection (BCD) system

Tsui et al. have developed the Bayesian Case Detection (BCD) system that provides a 

differential diagnosis of a patient case that is obtained from an electronic medical record. Its 

current implementation can diagnose SLI diseases and shigellosis [17]. The version of BCD 

we used takes as input free-text ED reports. The free-text ED reports are collected from 

several EDs in AC. BCD has a natural language processing component that extracts patient 

symptoms and signs from a free-text ED report and codes the clinical findings with Concept 
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Unique Identifiers (e.g., “the patient reports a severe cough today” would yield Cough = 

present) from the Unified Medical Language System (UMLS). These coded findings are 

input to a Bayesian network model of disease, which outputs a posterior probability over the 

modeled diseases that the patient might have.

Tsui et al. performed a preliminary evaluation of the BCD system to detect SLI cases using 

free-text reports from seven EDs in AC [17]. Laboratory-confirmed positive and negative 

cases of influenza were used as gold standards. The researchers obtained an area under the 

ROC curve of 0.80 (95% CI: 0.76–0.85). We used the BCD system to estimate the number 

of daily SLI cases that presented to eight monitored EDs in AC. These estimates are 

computed by summing the posterior SLI probabilities of the patients who visited those EDs 

on a given date.

A limitation of the BCD system is that it only monitored approximately 39% of all EDs in 

AC during 2009, due to the limited number of hospitals providing ED reports to it. We refer 

to that percentage as BCD's ED coverage. Since we know this ED coverage, we are able to 

estimate the total number of ED cases in all of the AC EDs. We explain this adjustment in 

Section 3.

2.5. Complementary approaches

This section describes two surveillance systems that utilize methods different than the one 

we introduce. It also discusses how the method we introduce can complement those systems.

The CDC's outpatient influenza-like-illness (ILI) surveillance network (ILINet) collects 

information on patient visits to more than 3000 healthcare providers for influenza-like 

illness in all 50 states, the District of Columbia and the US Virgin Islands. ILINet defines 

ILI as “fever (temperature of 100°F [37.8 °C] or greater) and a cough and/or a sore throat in 

the absence of a KNOWN cause other than influenza” [5]. Thus, in this particular context, 

ILI is a type of SLI that considers only those three specific symptoms. ILINet reports on a 

weekly basis ILI activity for the entire US, as well as individually for each of the ten major 

US surveillance regions that the CDC has defined, usually with a 1–2-week reporting lag 

[4]. The CDC also uses data reports collected through ILINet to create a measure of ILI 

activity by state. The limitations of ILINet are that (1) the information it provides has a 1–2 

week reporting lag, and (2) the finest geographical granularity for its estimates is the state 

level, although the CDC only broadly shares the larger, region-level numerical data.

The models presented in this paper complement ILINet. ILINet reports ILI activity at many 

types of outpatient clinics [5] at a regional level with a 1–2 week lag. The methods we 

presented here provide ED-derived estimates at the county level with just a one-day lag.

Google, Inc. developed “Flu Trends” [4] to predict ILI activity across the US based on 

Internet searches made using the Google search engine. To build Flu Trends, Google 

researchers performed a variable selection experiment to isolate the top search terms, which 

they call the “ILI-related search queries.” Using the fraction represented by those queries as 

the explanatory variable, they created a linear model to predict the weekly ILI percentages 

across the nine major US regions reported by the CDC [5]. They found that the predictions 
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made by the resulting model were highly correlated to the CDC weekly estimates of ILI [1] 

over the US at the regional level. They also found that they could consistently predict ILI 

percentages one to two weeks prior to the publication of the CDC weekly reports.

Despite its usefulness, the Google Flu Trends model has limitations. First, the high 

correlations observed are only validated for large populations (they were computed between 

estimates and data at the CDC's surveillance region level, and at the state level for Utah). 

Second, like the ILINet estimates, Flu Trends estimates are for weekly activity. Although in 

principle Flu Trends estimates could be produced daily (i.e., using queries made during the 

last day), to our knowledge the accuracy of predictions for this shorter time period are not 

available and have not been reported.

The models in this research also complement Flu Trends. Whereas the latter makes weekly 

predictions at the regional and state levels based on Internet searches, the current research 

can provide daily estimates at the county level.

3. A method for estimating SLI cases from TS

In this section we present a novel method for estimating SLI cases from OTC TS in EDs. 

Due to data availability, we created this model for estimating ED SLI cases in AC, but the 

methodology is flexible and can be extended to make estimates for other regions (Section 6).

To create a model for AC, we first gathered training data as follows. We obtained non-

negative daily sales of pediatric and adult thermometers from May 1 through December 31, 

2009 (n = 245 days) in AC from the NRDM. We will refer to the data from this period as the 

2009 dataset. We compared these TS data with the expected number of daily SLI cases that 

presented to EDs monitored in AC during the same period according to BCD. Fig. 1 shows a 

plot of TS during that eight-month period (solid line) and the number of ED SLI cases 

estimated by BCD during the same period (dash-dotted line). We found that the strongest 

cross-correlation of the two curves is 0.9 when the expected cases lag behind the TS data by 

one day; a zero-day lag had almost the same cross-correlation (0.89). Fig. 2 shows a plot of 

the estimated cases as a function of TS, which supports a linear relationship between those 

two quantities (black line).

The rationale for the selection of the 2009 dataset is twofold. First, the BCD system 

officially started operating in AC in May 2009, and hence, we only had data starting at that 

time. Second, we wanted to devise a model that could estimate from thermometer sales not 

only SLI activity during outbreaks (high activity periods) but also during non-outbreak 

periods (low activity periods). The 2009 dataset contains sub-periods of both high (during 

the 2009 H1N1 outbreak) and low SLI activity and thus was the suitable for creating the 

aforementioned model. A model that is capable of estimating SLI activity only during 

outbreaks is more limited in its usefulness.

Eq. (1) describes a linear model of SLI as a function of TS for AC, where S and I denote the 

slope and intercept parameters of the model, respectively, ED_SLI_BCD represents SLI 

cases in the EDs in AC that have BCD deployed, and TS_NRDM denotes thermometer sales 

reported by NRDM for AC.
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(1)

Eq. (1) only predicts the number of SLI cases that present to EDs in AC that have BCD 

installed. To predict the total number of ED cases of those diseases in AC, we need to adjust 

that equation to incorporate the ED coverage of BCD in AC. Let ED_SLI_T(AC, date) be the 

total number of ED SLI cases (the T stands for total) during date in AC. We can estimate 

ED_SLI_T using Eq. (2), where EDcov is the ED coverage of BCD, which is discussed in 

more detail later in this section.

(2)

We combine Eqs. (1) and (2) to obtain Eq. (3) that approximates the total number of daily 

SLI cases that present to all EDs in AC.

(3)

At the time this research was performed, the ED coverage of BCD in AC was around 39%. 

We calculated it by dividing the number of visits to EDs in AC where BCD is deployed by 

the total number of visits to EDs in AC from May 1st, 2009 through December 31st, 2009. 

We obtained the latter count from a system that our laboratory has deployed in all EDs in 

AC, except for one ED in a federal hospital.

For the sake of example, suppose that in the model given by Eq. (3) the slope (S) is 0.5 and 

the intercept (I) is 20. If on a given day d, the net number of thermometers sold in AC is 10, 

then the model would predict that the total ED SLI cases in AC on that day is approximately 

64 = 20/0.39 + (0.5/0.39)·10, where 0.39 is the estimated ED coverage of BCD in AC.

4. Evaluation methodology

This section describes experiments that evaluate how well Eq. (1) performs when using AC 

data for training a model with data from one period of time of m days and testing with data 

from a subsequent period of n days. To do so, we create training and testing sets, perform 

least squares linear regression on the training set to obtain slope (S) and intercept (I) 

parameters, and then use Eq. (1) with those parameters to predict ED cases for each day in 

the test set. The next training period begin n days after the start of the former training period.

For example, for a training set of m = 42 days (6 weeks) and a test set of n = 14 days (2 

weeks) we proceed as follows. We train a model with TS and BCD data from for example 

5/6/2009 (a Sunday) through 6/16/2009; we then apply that model to predict BCD-estimated 

SLI cases from 6/17/2009 through 6/30/2009. The TS data and BCD estimates from 

5/20/2009 (i.e., n = 14 days after 5/6/2009) through 7/02/2009 (i.e., 42 days after 5/20/2009) 

become the next training set.
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To evaluate the performance of the models after the 2009 H1N1 outbreak had largely 

dissipated, we included the first three months of 2010. For the sake of uniformity, we start 

on 5/6/2009, which is a Sunday, instead of on 5/1/2009, and include data up to 4/3/2010, 

which is a Saturday. We will refer to this dataset of 333 days as the experimental dataset. A 

plot of that set is shown in Fig. B1 in Appendix A.

Based on the above arrangement, we performed three experiments with different training 

and testing set sizes. In all these experiments the smallest training set consists of three weeks 

of data, and larger training sets increase in periods of three weeks, with the largest set 

consisting of to 15 weeks. That is, m = 21, 42, 63, 84, and 105 days. We stopped at 105 days 

because that is approximately the number of days in the primary wave of the 2009 H1N1 

outbreak in AC. The experiments differ in the number of days used for the testing set:

• Experiment 1 (E1): Each testing set consists of 7 days (1 week) of data. The total 

number of training sets in this experiment is 190.

• Experiment 2 (E2): All the testing sets consist of 14 days (2 weeks) of data. The 

total number of training sets is 94.

• Experiment 3 (E3): Each testing set consists of the same number of days as its 

corresponding training set. That is, n = m. The total number of training sets is 28.

The rationale of picking the sizes of the testing sets in the first and second experiment is to 

see how well the model can estimate disease activity during periods of time close to the date 

when the estimate is produced, which may be of greater public-health interest. The reason 

for selecting the size of the testing set on the third experiment was to see how well the 

models performed on a testing set the same size as its training set.

We evaluated the goodness of the regression performed to create each of the linear models 

described above with the coefficient of determination, denoted as R2. It measures the fraction 

of the variability of the modeled response variable (e.g., expected number of daily ED SLI 

cases computed by BCD) that is explained by a regression [18]. Relationships with a strong 

positive (or negative) slope that are close to being linear would be expected to have an R2 

value near 1. Associations with a slope near zero would be expected to have an R2 value 

near zero. We calculate R2 with Eq. (4) [18], where

• m is the number of days in the training set used to generate a model (i.e., m can be 

21, 42, 63, 84, and 105).

• PredictedValuei represents a given model's prediction of daily ED SLI cases from 

thermometer sales on day i of the training set,

• the variable ActualValuei is the number of SLI cases estimated by BCD on that 

same day, and

• the bar (–) denotes the arithmetic mean of the quantity below it (during the given 

period of n days).
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(4)

We evaluated the predictive performance of each of those models using a measure known as 

the mean absolute percentage error (MAPE) [19,20], which is computed using Eq. (5). A 

MAPE value of X means that, on average, a model's predictions are X% greater or smaller 

than the actual quantity. Thus, the closer the MAPE values are to zero (with zero indicating 

that the predictions and actual values are the same), the better is the forecasting performance 

of an estimation method. As in the case of R2, the value of n in Eq. (5) for this experiment is 

the number of days in the testing set for which we generate a prediction (i.e., n can be 7, 14, 

21, 42, 63, 84, and 105), the variable ActualValuei in Eq. (5) is the number of SLI cases 

estimated by BCD on day i in that set, the variable PredictedValuei represents a given 

model's prediction of daily ED SLI cases from thermometer sales on that same day, and the 

parallel bars (∥) denote the absolute value of the quantity they enclose.

(5)

To assess the forecasting performance of a method, Lewis [21] suggested four ranges of 

MAPE values, namely, [0%, 10%], (10%, 20%], (20%, 50%], and (50%, ∞). He labeled 

these ranges as having highly accurate, good, reasonable, and inaccurate forecasting 

performance, respectively. We use these as regions of reference to facilitate our analysis.

In the next section we summarize the performance for each experiment using the average 

MAPE, the minimum and maximum MAPE values, and the minimum and maximum R2 

values.

5. Results and discussion

In this section we present and discuss the results of the experiments outlined in Section 4. 

These experiments evaluate models that estimate daily ED SLI cases in AC during different 

periods of time. The result of experiments E1, E2, and E3 are shown in Tables 2–4, 

respectively. Table 2 shows that experiment E1 achieves the lowest Min MAPE values, 

relative to the other experiments, and achieves average MAPE values of 16.7% or less. 

However, E1 also has the largest MAPE estimation errors, as given by the Max MAPE 

column in Table 2). Recall from Section 4 that a MAPE greater than 10% and less than or 

equal to 20% is considered to be good forecasting performance, whereas one greater than 

50% is inaccurate performance [21]. Table 2 shows that the average MAPE is well within 

the good forecasting range. A more stringent criteria, however, is to consider the maximum 

MAPE over all 44 sets. When we do so, most (4 out of 5) of the maximum MAPE values in 

E1 are uncomfortably close to inaccurate performance. As a result, the models produced by 

the method presented in this paper to estimate SLI cases over a period as short as 7 days 

should be used with caution.
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Table 3 shows that the average MAPE values are almost as good as those of E1 (the training 

sets are of the same sizes in both experiments but the testing sets are of different sizes, 

except for the first), but the maximum MAPE values are not as high. All of the former are in 

the “good” forecasting bracket, whereas all the latter are well within the “reasonable” 

forecasting bracket.

For experiment E3, Table 4 shows that the average MAPE values are not as good as those 

obtained in E1 and E2, but the maximum MAPE values are lower than in the other two 

experiments. It is also clear that in this experiment the errors for the last two configurations 

(m = n = 84, and m = n = 105) are higher than those of the other configurations for this same 

experiment. The latter seems to occur when the training set contains mostly data from a non-

outbreak period but the majority of data of the testing set comes from an outbreak period (or 

vice versa).

We now briefly discuss individual results in experiments E1 and E2, rather than their 

aggregated statistics. Figs. 3 and 4 show, for experiment E2 and E3, respectively, the MAPE 

values for each testing set in the configuration where the training set consists of m = 42 days 

(6 weeks) of data and the testing set consists of i = 14 days of data. Appendix B includes 

similar figures for the other configurations in these experiments.2 In these figures it can be 

seen that the forecasting performance of the models declines under two circumstances:

• A decline occurs when there is a sharp drop in the number of SLI cases in a test set 

relative to the associated training set. For example, the testing set consisting of data 

from 10/29/2009 through 11/11/2009 (n = 14 days) shown in Fig. B2, is a period 

when the number of BCD-estimates SLI cases was falling sharply. However, its 

corresponding training set consisting of data from 10/7/2009 through 10/28/2009 

(m = 21 days) coincides with the period of highest disease activity. A similar 

phenomenon happens for the latter (Fig. B2) and other configurations, for the 

testing sets that start at various points during December 2009 (e.g., Figs. 3 and B3), 

and during February 2010 (e.g., Figs. B4 and B6).

• The second case is the reverse of the first, namely, the training set includes mostly 

days of low disease activity whereas the testing set includes days of noticeably 

higher activity. The latter circumstance is most clearly visible for configurations 

consisting of training sets with data from up to July and August, 2009, but with 

testing sets with data from September 2009 and afterward. For example, see Fig. 

B7 (second bar) for m = n = 63, and Fig. B5 (second bar) for m = 105, n = 14.

The performance decline in the two cases described above can be explained in terms of a 

mismatch between the training and testing periods, due to changes in disease activity 

between those periods. The forecast errors worsened both before periods of high disease 

activity and after periods in which the disease activity had peaked and was waning. 

Fortunately, such performance declines did not last for more than a single estimation period 

in the majority of cases. For example, this pattern is observed for the testing periods that 

2Except for the configurations where m = n = 83 and m = n = 105 in E3. The only two MAPE values resulting from that experiment 
came from the first and second testing sets on each of those two configurations. They are shown in the Max MAPE and Min MAPE 
columns in Table 4, respectively.
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start on 7/15/2009 and on 12/16/2009 in Fig. 3, and those that start on 9/9/2009 and on 

12/02/2009 in Fig. 4. In both figures it can be seen that each of those periods is followed by 

an estimation period with a noticeably lower estimation error. The same transient decline is 

visible in the other figures as well. One possible approach to addressing this problem would 

be to combine the methods presented in the present study with outbreak detection 

techniques. The detection of the start of an outbreak and the beginning of its decay would 

then guide which data to use to train the models.

In Tables 2–4 the Max R2 values were consistently associated with periods of high and 

dynamic disease activity, where we would expect strong positive relationships between TS 

and daily ED SLI cases. In contrast, Min R2 values were generally associated with periods of 

no disease activity, where the slope of the relationship between TS and ED SLI cases is 

close to zero.

We close this section with a summary of the main findings from the experiments described 

here.

• On the whole, the linear models achieved “good” forecasting (MAPE) performance 

under most circumstances, and with only a few exceptions they achieved 

“reasonable” forecasting performance otherwise.

• The lowest forecasting errors (as measured with the MAPE metric) are obtained 

when estimating 7 days of data, but such a short period also produces the worse 

forecasting errors. However, by using prediction periods of 14, 42, and 63 days the 

worst-case forecasting performance improves while the average forecasting error 

remains in the interval of “good” performance.

• Forecasting performance generally decreases when a model is trained primarily 

with data from a period of high disease activity but used to forecast a period of 

mostly low disease activity, or vice versa. However, such declines in performance 

are transient.

6. Extensions

In this section, we show how to extend the model developed in Section 4 to predict daily ED 

SLI cases in other US second-level administrative divisions (SLDs), such as counties and 

independent cities [22,23]. For the sake of simplicity, we will use the term “county” instead 

of the more precise term SLD. The main assumption behind this method is that the linear 

relationship we found for AC between daily TS and ED cases of SLI (Fig. 2) is also present 

in other counties. We believe this is a reasonable first-order approximation. However, due to 

the non-availability to us of ED reports from other counties, we do not attempt here to 

validate the accuracy of the AC model when applied to other counties, but leave it as future 

research.

Eq. (3) is only applicable to predict cases in AC's EDs based on TS in AC, as reported by 

NRDM. We extended the model by adjusting the AC model for differences between (1) the 

population size of AC and a given county, and (2) the TS in AC and that county. To do so, 

we follow a three-step procedure. First, we normalize thermometers sold to be per person 
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(PP) in the total population (pop) of a county. We use NRDM's market share (MS) in that 

county to estimate the TS. NRDM's MS (which we denote with MS_NRDM) is the fraction 

of the total OTC sales by all retailers in a particular county that are reported by NRDM 

retailers. We explain how we obtain MS_NRDM information in Appendix A. In Eq. (6), 

TS_PP is thermometer sales per person, r denotes the county of interest, pop(r) represents its 

population, and d is a particular date.

(6)

Second, we incorporate Eq. (6) into Eq. (3) and adjust it to produce an estimate for AC of 

daily ED SLI cases per person in the population. The result is shown in the following 

equation.

(7)

Note that in Eq. (7), the term MS_NRDM(AC) is part of the calculation of the adjusted slope 

(Eq. (3)), whereas TS_PP(AC, d) serves as the independent variable. Hence, to calculate ED 

SLI cases in other regions, we replace TS_PP(AC, d), which is specialized for AC, with the 

more general term TS_PP(r, d), which is the thermometer sales per person in an arbitrary 

country r, as shown in the following equation.

(8)

To obtain an estimate of the number of daily ED SLI cases in a county, denoted with 

ED_SLI, we simply adjust ED_SLI_PP by multiplying it by the population of the county. 

We obtain Eq. (9) as a result. Note that if we use r = AC, Eq. (9) reduces to Eq. (3), which is 

the model in the previous section to predict total ED cases for AC.

(9)

Continuing with the example of the previous section (where for illustration purposes we 

assumed that the S and I parameters were 0.5 and 20, respectively), suppose that we wish to 

compute the total ED cases in some county SC in which a net of 30 thermometers were sold 

on day d by the retailers in SC that report to NRDM. Furthermore, suppose that the 

population of SC is 200,000 people, that MS_NRDM in SC is 0.6 (i.e., 60% of all TS in SC 

are made by NRDM retailers), and that MS_NRDM in AC is 0.7. Using the population of 

AC in 2009 (1,218,494 people [23]), Eq. (9) predicts that there were about 13 ED cases of 

SLI in SC on day d:
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(10)

7. Conclusions and future work

Based on the results of the experiments presented here, we conclude that it is possible that 

linear models trained to estimate SLI ED cases based on thermometer sales can have good 

forecasting performance. We showed this in the case for Allegheny County (AC), 

Pennsylvania. In our experiments we found that under most testing conditions the methods 

achieved good forecasting performance, with only occasional, transient declines. Given 

these results and the timeliness with which the TS data can be obtained from NRDM, we 

think the methods presented in this paper can be helpful for epidemiologists and public 

health officials.

The results presented here raise the possibility that similar models could be applied in other 

regions of the country, where thermometer sales data are commonly available, but daily ED 

SLI counts are not. In this paper, we describe how to transform the AC model to produce 

such estimates. At the time that this study was performed, we did not have access to 

estimates of daily ED SLI cases in other counties in the US. Thus, we could not test how 

accurately the AC-derived model predicts ED SLI counts in other counties in the US, many 

of which do have TS data that are available through the NRDM. Even more broadly, it will 

be important to test how well the approach described here will work in countries other than 

the US. In addition, in the future, it will be useful to evaluate how well models developed 

using data from one outbreak are able to perform in making predictions in subsequent 

outbreaks. We view these tasks as important directions for future research.

We hypothesize that other signals of SLI activity, such as laboratory confirmed SLI cases, 

may exhibit a similar linear relationship with TS, as well as with the sales of other relevant 

OTC medications. Investigating such relationships is another promising direction for future 

research.
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Appendix A. NRDM's market share estimation

This section describes a method for estimating the market share (MS) of NRDM in a region, 

which appears in Eq. (6). This method is based on information provided by a market 

analysis company.
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A.1. Market share report

We obtained a copy of the Drug Industry Market Share Report (DIMSR) from Chain Store 

Guides LLC (CSG), a market analysis company. It contains information about drug retail 

operators in more than 900 Core Based Statistical Areas (CBSA) in the US [24]. A CBSA is 

defined by the US. Census Bureau as a metropolitan statistical area (MSA) or a micropolitan 

area. An MSA is an urban center of 50,000 or more people, while a micropolitan area is an 

urban center of at least 10,000, but less than 50,000 people [25]. The CBSAs consist of 

constituent regions, but not all of a given CBSA's constituent regions need to be located in a 

single state. For example, the Philadelphia CBSA is comprised of counties in several states 

(see Fig. A1). The most common type of constituent region of a CBSA is the county, but 

other types of administrative divisions, such as independent cities, municipalities, and 

districts [22,23], are also possible.

CSG obtains sales information of OTC healthcare products (including, but not limited to, 

thermometers) of a subset of retailers located in each of the CBSAs that CSG covers. The 

fraction of OTC sales by a particular retailer in a given CBSA is referred to in the DIMSR as 

the front-end market share (FEMS) of that retailer in that CBSA. As an example, Table A1 

shows information for fictitious retailers with stores in a fictitious CBSA labeled FC (note 

that the FEMS of those retailers may be different in another CBSA in which they are also 

present). Of the five retailers in FC, three report sales data to CSG (and thus have an 

associated FEMS), three report data to NRDM, two report data to both, and one reports data 

to neither (see Fig. A1 and Table A1).

Because TS are OTC products, it would be the best to use the FEMS to approximate 

MS_NRDM in a region. However, the absence of FEMS for many retailers in the CBSAs 

prevents us from doing so. Fortunately, DIMSR also provides information about the 

prescription market share (RXMS) of all the retailers in all the CBSAs that are part of that 

report. Thus, in the next section we describe a method for calculating MS_NRDM that is 

based on the RXMS of the retailers that report to NRDM.

A.2. Method

We address the approximation of NRDM market share in an arbitrary region in two-steps 

using only CBSA data from the DIMSR. First, we decompose each CBSAi in DIMSR into its 

constituent regions, such as counties. Second, for each constituent region of CBSAi, we add 

up the RXMS of each of the retailers in that constituent region that report sales to NRDM. 

We do this because we want to be able to produce estimates at the county level, not at the 

CBSA level. Hereafter, we will refer to the approximation produced with this method as 

MS_NRDM_RX. Equation (A.1)3 shows the computation of MS_NRDM_RX, where r is a 

particular constituent region (e.g., AC) and RetailerNRDM denotes a retailer that reports OTC 

sales data to the NRDM and that is present in the CBSA of interest.

3We will denote an approximation of a quantity that we cannot directly measure with a hat (^) over such symbol for that quantity. For 

instance,  means an approximation of MS_NRDM.
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(A.1)

This method makes two main assumptions. First, it assumes that each of the retailers in a 

given CBSA has the same RXMS in each constituent region in that CBSA. For example, if 

the RXMS of a given retailer in the Pittsburgh CBSA (Fig. A1) is 7%, we assume that its 

RXMS is also 7% in each of the counties (e.g., Allegheny, and Butler) that are considered 

part of that CBSA. While no doubt imperfect, we believe this is a plausible first-order 

approximation, because retailers often have a commercial penetration that is regional. 

Second, we assume that the RXMS of any retailer in a CBSA is roughly equivalent to its 

real FEMS of OTC healthcare products in that CBSA. That is, if the sales data that CSG 

uses for calculating FEMS were available from all the retailers in a CBSA, as is the 

information used to calculate RXMS is, we conjecture that these two quantities would be 

approximately the same. The more that each individual obtains his or her outpatient 

prescriptions and OTC products from the same retail pharmacy chain, the better this 

approximation will be.

We use MS_NRDM_RX as an approximation of MS_NRDM in Equation (6) (from Section 6) 

as shown below, to calculate the thermometer sales per person, TS_PP, in a given 

constituent region r.

(A. 2)

Appendix B

(See Figs. B1–B7)
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Fig. A1. 
Two sample CBSAs. On the left is the Pittsburgh CBSA, which only contains counties 

located in Pennsylvania (PA), including Allegheny County. On the right is the Philadelphia 

CBSA, which encompasses regions in PA and other states (e.g., New Jersey).
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Fig. B1. 
Plots of daily TS and daily ED SLI cases estimated in BCD from May 1, 2009 through 

March 31, 2010 in AC.

Fig. B2. 
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MAPE values (yellow bars, left y axis) for one configuration in experiment E2 when the 

training set consists of 21 days of data and the testing set consists of 14 days of data. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)

Fig. B3. 
MAPE values (yellow bars, left y axis) for one configuration in experiment E2 when the 

training set consists of 63 days of data and the testing set consists of 14 days of data. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. B4. 
MAPE values (yellow bars, left y axis) for one configuration in experiment E2 when the 

training set consists of 84 days of data and the testing set consists of 14 days of data. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)

Fig. B5. 
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MAPE values (yellow bars, left y axis) for one configuration in experiment E2 when the 

training set consists of 105 days of data and the testing set consists of 14 days of data. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)

Fig. B6. 
MAPE values (yellow bars, left y axis) for one configuration in experiment E3 when the 

training set consists of 21 days of data and the testing set consists of 21 days of data. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. B7. 
MAPE values (yellow bars, left y axis) for one configuration in experiment E3 when the 

training set consists of 63 days of data and the testing set consists of 63 days of data. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)

Table A1

Example of the information that might be reported in the DIMSR for fictitious retailers 

located in a fictitious CBSA called FC.

List of all the 
retailers in FC

Reports to NRDM? OTC sales data 
are in DIMSR?

FEMS of the retailer in 
FC

RXMS of the 
retailer in FC 
(%)

Retailer 1 Yes Yes 75% 70

Retailer 2 Yes Yes 10% 9

Retailer 3 Yes No Not estimated in DIMSR 6

Retailer 4 No Yes 15% 10

Retailer 5 No No Not estimated in DIMSR 5

Glossary

AC Allegheny County, Pennsylvania

BCD Bayesian Case Detection system (Section 2.4)

CBSA core based statistical area (Appendix A)

CDC centers for disease control and prevention
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CI confidence interval

CSG chain store guides LLC (Appendix A)

DIMSR drug industry market share report (Appendix A)

FEMS front-end market share (Appendix A)

ILI influenza-like illness (Section 2.5)

MAPE mean absolute percentage error (Section 4)

MS market share

MSA metropolitan statistical area (Appendix A)

NRDM the National Retail Data Monitor project (Section 2.2)

OTC over-the-counter sales (Section 2.1)

PA Pennsylvania

POP population

PP per person

ROC receiver operator characteristic

Rx a prescription for medicine

RXMS prescription market share (Appendix A)

SLD US second-level administrative division (Section 3)

SLI A disease that presents symptomatically like influenza, including influenza 

itself

TS Thermometer sales

UMLS Unified Medical Language System
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Fig. 1. 
Plots of daily TS and daily ED SLI cases estimated in BCD from May 1, 2009 through 

December 31, 2009 in AC. The shaded area indicates the period when the second wave of 

the 2009 H1N1 outbreak is estimated to have occurred throughout the US (see Section 2.3).
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Fig. 2. 
A plot of daily estimates of ED SLI cases as function of daily TS in AC from May 1, 2009 

through December 31, 2009.
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Fig. 3. 
MAPE values (yellow bars, left y axis) for one configuration in experiment E2 when the 

training set consists of 42 days (6 weeks) of data and the training set consists of 14 days of 

data. The error bars represent a 95% C.I. The bars span over the testing period from which 

the MAPE value was computed. The shaded area corresponds to the second wave of the 

2009 H1N1 outbreak (Section 2.3). The daily estimates of ED SLI cases by BCD (Section 3) 

are also shown (red line, right y axis). The tick marks on the left y axis correspond to the 

MAPE ranges suggested by Lewis [21] (Section 4). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. 
MAPE values (yellow bars, left y axis) for one configuration in experiment E2 when the 

training set consists of 42 days (6 weeks) of data and the training set consists of 42 days of 

data. The error bars represent a 95% C.I. Please see the text and the caption of Fig. 3 for 

more details about the data shown in this figure. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Summary of estimates of the incidence of H1N1 cases during the 2009 outbreak.

Authors Methods Inputs Estimates

Reed et al. 
[1]

Multiplicative model coupled 
with a Monte Carlo simulation

• Count of laboratory-confirmed cases through 
July 23, 2009
• Proportions observed in prior published studies 
and in recent surveys and investigations of 
pandemic (H1N1) 2009

Between 1.8 million and 5.7 
million H1N1 cases occurred 
during April-July 2009

CDC [16] Used Reed et al. method [1] • Data on influenza-associated hospitalizations 
collected through CDC's Emerging Infections 
Program

Approximately 55 million people 
were infected with H1N1 in the US 
(~18% of its 2009 pop.) between 
April and December 12, 2009 [16]

Presanis et 
al. [2]

Bayesian evidence synthesis • Cases of medically attended infection in the city 
of Milwaukee
• Hospitalizations, intensive care admission or 
mechanical ventilation, and deaths in New York 
City
• Survey data from (1) a New York City telephone 
survey in May 2009, (2) the Behavioral Risk 
Factor Surveillance Survey (BRFSS) in nine 
states in 2007 and (3) a telephone survey in May 
2009 in the same nine states as the BRFSS 2007 
survey

From April to July 2009, between 
0.16% and 1.44% of symptomatic 
H1N1 patients were hospitalized 
and between 0.0007% and 0.048% 
died

Ross et al. 
[3]

Hemagglutination-inhibition 
assays on blood samples

• Anonymous blood samples obtained from 
clinical laboratories in Allegheny County, 
Pennsylvania

Approximately 63 million people 
in the US (~21% of the pop.) 
became infected through early 
December 2009
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Table 2

Datasets used in the experiment E1 and the results obtained. See the text for a discussion of the interpretation 

of the R2 and MAPE values.

Number of sets Training set (days) Min R2 Max R2 Testing set (days) Avg. MAPE 
and 95% CI 
(%)

Min MAPE (%) Max MAPE (%)

44 21 0.0017 0.6193 7 16.70 ±2.38 7.87 46.76

41 42 0.0002 0.7875 7 16.26 ±1.99 8.21 39.19

38 63 0.0005 0.8245 7 16.44 ±2.14 9.21 38.89

35 84 0.0068 0.8297 7 16.63 ±2.43 7.72 38.66

32 105 0.0087 0.8255 7 16.67 ±2.49 7.58 34.88
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Table 3

Datasets used in the experiment E2 and the results obtained.

Number of sets Training set (days) Min R2 Max R2 Testing set (days) Avg. MAPE 
and 95% CI 
(%)

Min MAPE (%) Max MAPE (%)

22 21 0.0017 0.5768 14 16.93 ±2.69 9.44 31.12

20 42 0.0009 0.7875 14 16.56 ±2.47 9.83 34.57

19 63 0.0061 0.8245 14 16.64 ±2.49 9.96 34.08

17 84 0.0103 0.8230 14 17.13 ±2.64 11.90 33.90

16 105 0.0300 0.8255 14 16.75 ±2.50 9.33 26.99
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Table 4

Datasets used in the experiment E3 and the results obtained.

Number of sets Training set (days) Min R2 Max R2 Testing set (days) Avg. MAPE 
and 95% CI 
(%)

Min MAPE (%) Max MAPE (%)

14 21 0.0209 0.5768 21 16.98 ±2.87 11.82 28.72

6 42 0.0009 0.7875 42 16.42 ±3.38 13.09 21.12

4 63 0.0061 0.6380 63 19.27 ±3.18 16.53 21.33

2 84 0.0233 0.7862 84 20.17 - 15.34 25.00

2 105 0.0300 0.7484 105 23.75 - 19.23 28.26
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